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ABSTRACT 

Tensor scale (t-scale) is a parametric representation of local structure morphology 

that simultaneously describes its orientation, shape and isotropic scale. At any image 

location, t-scale is the parametric representation of the largest ellipse (an ellipsoid in 3D) 

centered at that location and contained in the same homogeneous region. 

Recently, we have improved the t-scale computation algorithm by: (1) optimizing 

digital representations for LoG and DoG kernels for edge detection and (2) ellipse fitting 

by using minimization of both algebraic and geometric distance errors. Also, t-scale has 

been applied to computing the deformation vector field with applications to medical 

image registration. Currently, the method is implemented in two-dimension (2D) and the 

deformation vector field is directly computed from t-scale-derived normal vectors at 

matching locations in two images to be registered. Also, the method has been used to 

develop a simple algorithm for computing 2D warping from one shape onto another. 

Meanwhile, t-scale has been applied to generating interpolation lines with applications to 

medical image interpolation using normal vector. Normal vector yields local structure 

orientation pointing to the closest edge. However, this information is less reliable along 

the medial axis of a shape as it may be associated with either of the two opposite edges of 

the local shape. This problem is overcome using a shape-linearity measure estimating 

relative changes in scale along the orthogonal direction. Preliminary results demonstrate 

the method’s potential in estimating deformation between two images and interpolating 

between neighboring slices in a grey scale image. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Tensor Scale 

Scale [1-4] plays an important role in many medical imaging applications and is 

useful in determining the optimum trade-off between noise smoothing and 

perception/detection of structures. It may be thought of as the spatial resolution, or, more 

generally, a range of resolutions needed to ensure a sufficient yet compact object 

representation [1]. Witkin [2] and Koenderink [3] mathematically formulated the concept 

of scale in the form of scale-space theory. Discrete scale-space representations [4] have 

been used in several imaging applications including segmentation [5], clustering [6], 

classification [7], and structural analysis [8]. The notion of “local scale” [9-12] emerged 

from the needs of spatially tuning neighborhood kernel size [13] or developing space-

variant parameter controlling strategies [14] toward improving the performance of 

different methods. Local structure-based morphometric scale information may be useful 

to several applications such as filtering, edge detection, object segmentation, registration, 

analysis of regional structural properties including orientation, thickness, shape, etc. We 

refer to this notion of scale as “local morphometric scale” and briefly “local scale”. 

Saha et al. [13, 14] initiated the notion of local morphometric scale using a 

spherical model that was applied to image segmentation [13, 15, 16], filtering [14], 

registration [17], and removal of partial volume effects in rendering [18]. Although our 

preliminary results have demonstrated effectiveness of this notion of local scale in 

different image processing applications, a major limitation of the spherical model is that 

it ignores orientation and anisotropy of local structures. For example, the spherical model 
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of local scale would not be efficient in smoothing along a narrow elongated structure. 

Also, spherical scale would not be able to classify trabeculae in a trabecular bone 

network as belonging to plates and rods nor to identify their orientations. These 

limitations of spherical or isotropic model of local scale led to the notion of “tensor scale” 

– a local morphometric parameter yielding a unified representation of structure size, 

orientation, and anisotropy [19, 20]. Tensor scale is a valuable feature associated with 

every image point and is potentially useful in several image processing and computer 

vision applications, especially the medical imaging applications where local structural 

and scale information may play important roles. A few works have been reported on 

representing local orientation using gradient structure tensor [21-25]. Recently, Weijer et 

al. [24] and Rieger and van Vliet [25] have proposed new methods to estimate curvature 

of space curves using gradient tensor field. Although, gradient tensor field efficiently 

provides orientation information near edges, it may not yield shape and size or thickness 

information, especially, at locations far away from edges. Recently, a generalized local 

scale concept [26] has been developed where the local scale at a point is represented as 

the largest set of points connected to the candidate point under a homogeneity criterion. 

Saha et al. [19, 20] described tensor scale at an image location as the parametric 

representation of the largest ellipse (or, ellipsoid in three-dimensions) centered at that 

image location and contained inside the same homogeneous region under a predefined 

criterion. They have presented a computational solution [20] to compute tensor scale in 

grey level images and investigated the effectiveness of the new local morphometric scale 

in image segmentation [27], registration [28], filtering [20] and also in quantifying local 

morphometry in complex quasi random network of plates and rods in human trabecular 
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bone via in vivo imaging [29, 30]. Recently, Andalo et al. introduced a new shape 

descriptor based on tensor scale [31] and used it in detection of salience on a given 

contour [32]. 

Although, the computational framework proposed by Saha et al. is robust and 

effective, optimization of several steps were not studied. One major contribution of this 

paper is to optimize the steps needed for tensor scale computation. Specifically, we 

optimized digital LoG and DoG kernels for edge detection at varying kernel size and 

ellipse fitting algorithm by using minimization of both algebraic and geometric distance 

errors. 

1.2 Non-rigid Registration 

We investigate the potential role of tensor scale in non-rigid image registration 

and the preliminary results are presented. 

Image registration computes the transformation that optimally maps one image 

onto another under certain matching criterion. Properties of such transformation function 

may vary from rigid body to free-form transformations depending upon the application 

and experimental setup. Many medical imaging applications [33-35] demands free form 

registration of anatomic structures in different images which may be caused by – (1) 

physiologic motion, (2) changes in size and shape due to disease or natural growth and (3) 

shape and size variations across subjects. Research interests on deformable image 

registration have grown not only for its paramount importance in medical imaging but 

also due to the immense challenges and difficulties it poses. An accurate and reliable 

solution to this problem will highly aid research studies involving cross-modality and 
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population and atlas-based analysis and temporal analysis for monitoring a treatment or 

disease progression.  

Many deformable registration approaches have been proposed in literature [36-

41]. A deformable registration algorithm primarily deals with the following three 

challenges – (1) an efficient similarity measure, (2) an effective spatial transformation 

model and (3) a transformation control and optimization strategy. A solution to the last 

two challenges leads to a basic registration framework [37, 39-41] and somewhat less 

dependent on the research relating the first challenges[36, 38]. The similarity measure 

controls the changes in the deformation function in its parametric space. Roles of several 

similarity measures, including landmarks [36], intensity [37], mutual information [38] or 

joint entropy [42], have been studied in the context of deformable registration. The 

spatial transformation model and control strategy defines the relationship between 

regions in two images and enforces topological consistency of registration. Several 

transformation models have been popularly adopted in literature including elastic model 

[39], viscous fluid model [40, 41] and optical flow [37]. Generally speaking, an image is 

modeled as a physical deformable body where measures of similarity contribute to the 

“external force” while the spatial transformation model constitutes the “internal force”, 

and the overall goal of registration is finding the equilibrium of deformation at minimal 

energy. 

1.3 Medical Image Interpolation 

We developed a tensor scale based image interpolation method and tested its 

potential by comparing its preliminary result on both phantom and real data sets with 

registration based method.  
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Medical images are often represented as a set of slices. As a three-dimensional 

data set, distances between voxels are important parameters that determine the isotropic 

character of the data set. The thickness of each slice is often greater than the distance 

between two neighboring pixels within a slice. Therefore, most raw data set of medical 

imaging is composed of voxels that are anisotropic. However, isotropic or near isotropic 

3D data is desirable in a number of image processing, analysis and visualization tasks. 

Therefore, interpolation, which is used as a preprocessing step, is often performed to 

increase the resolution perpendicular to the slice planes to restore the isotropy of the data 

set before applying any visualization or analysis techniques. 

For this type of inter-slice interpolation problem, there are mainly two kinds of 

techniques: scene-based and object-based methods [43]. Scene-based interpolating 

approaches are based only on the image intensities and voxel location within the image. 

This group includes well-known methods such as nearest neighbor, linear, spline, and 

kernel-based interpolation [44] which is a complex enhancement for the former methods. 

Scene-based techniques are easier to implement, but significant artifacts could be 

generated during this process because in practical applications, anatomical structures 

always shift considerably between slices, which inevitably breaks the priori assumption 

in such methods that in estimation, pixels used in the original slices belong to the same 

anatomic structure. 

Object-based interpolation techniques extract additional information from the 

image slices to guide the process to get more accurate result as pixels belonging to the 

same anatomic structures on the different slices can be determined and grouped. The 

interpolation can then be performed within structures. Many methods are proposed in this 
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category, for example, shape-based methods [45, 46], registration-based methods [47] 

and morphology-based methods [48]. These techniques provide a practical way to 

interpolate between segmented slices. However, some of these methods only interpolate 

binary images, and some involve a preliminary intensity-based registration between slices 

to judge corresponding positions. 

1.4 Outline 

In this paper, we improve the t-scale computation algorithm by – (1) optimizing 

digital LoG and DoG kernels for edge detection at varying kernel sizes and (2) ellipse 

fitting by using minimization of both algebraic and geometric distance errors. Also, we 

have applied t-scale for 2D image registration, warping and interpolation and have 

presented preliminary results. Toward this goal, we have developed a new method based 

on “normal vector”. Given the computed t-scale at an image point, the nearest edge 

binding the local structure can be defined and the normal vector is computed by the 

vector joining the point and the nearest binding edge. This normal vector may vary over 

the entire 360° angular space unlike the original t-scale orientation which varies only 

over 180°. Normal vector is a useful image feature representing a high level local 

morphological property in an image and may be directly computed from a gray level 

image requiring no image segmentation. 

In Chapter 2, we present the improved t-scale computation algorithm followed by 

a new t-scale based 2D image registration method and a t-scale based medical image 

interpolation method.  
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In Chapter 3, the results of application of the t-scale based registration and 

interpolation method on both phantom and real images are presented and compared with 

other methods of BSpline based registration and registration based interpolation. 

In Chapter 4, we discuss some problems encountered and explore future 

extensions. 

In Chapter 5, the work of this thesis is summarized. 
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CHAPTER TWO 

METHODS 

In this section, we present the improved t-scale computation algorithm with 

optimized edge detection and ellipse fitting. It is followed by the description of the new t-

scale-based two-dimensional registration method and interpolation method. 

2.1 Tensor Scale Computation 

2.1.1 General Procedure 

T-scale is computed by locating the edge points visible from a given point 𝑝 along 

different directions which are then used to compute the t-scale ellipse at 𝑝. The basic 

steps in tensor scale computation are as shown in Figure 1: 

1) Generate a set of radially opposite sample line pairs with the candidate point as origin 

(red) and compute the intensity along these sample lines. 

2) Trace the closest edge point on each sample line (blue and yellow). 

3) Reposition the edge locations (yellow) so that the two edges on a pair of sample lines 

are equidistant to the candidate point (green) satisfying axial symmetry. 

4) Determine the t-scale by computing the best fit ellipse to the repositioned edge points. 
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Figure 1 Illustration of different steps in computation of t-scale at a point (red). The 
method starts with edge location (blue and yellow) on sample lines emanating 
from the candidate point. Following axial symmetry of an ellipse, the edge 
points on each pair of radially opposite sample lines are repositioned (yellow 
to green). Finally, tensor scale ellipse (red) is computed from repositioned 
edge points. 

Edge detection and ellipse fitting are the two critical steps in t-scale computation 

framework that largely determine the overall performance and accuracy of the method. 

Noise and blurring can often cause errors in edge detection leading to artifacts in local 

structural definition captured in t-scale. With the ellipse fitting step, the primary object is 

the synergy between accuracy and computational complexity. In the following, we briefly 

discuss each of the above steps and describe the improvements achieved here.  

2.1.2 Intensity Computation 

We select 𝑚 pairs of mutually opposite sample lines at an approximately uniform 

distribution over the entire angular space ensuring that the final tensor scale is not skewed 
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in any direction. Two parameters are identified with sample lines, namely, the sampling 

interval and the length of each sample line. The length 𝐿 of a sample line represents the 

largest distinguishable local scale/structure size; i.e., it limits the extent of locality or 

neighborhood size. Such parameter should be carefully chosen. Obviously, too small 

value of sample line length is not desirable; again a very large value of this parameter 

adds to the computational burden while the additional information may not be so 

important. Therefore, a correct choice of the sample line length parameter is important 

and application dependent. The sample interval 𝛿 determines the density of sample points 

on a sample line and a right choice of 𝛿 are determined by the trade-off between the 

computational complexity and the scale of the finest detectable structure. Assuming that 

the image resolution is synchronized with the target application, we recommend choosing 

𝛿 between 1 and 0.5 times the smallest dimension of a voxel. The intensity at any sample 

points is determined using linear interpolation of the four binding grid points. Let 𝑓𝑖
𝑝(𝜈) 

denote the intensity computed at the 𝑣𝑡𝑕  sample point on the 𝑖𝑡𝑕  sample line emanating 

from the pixel 𝑝. 

2.1.3 Edge Location 

To eliminate the effects of locally disconnected structures of similar intensities 

during edge detection, two intensity connections 𝜇𝑈𝑃  and 𝜇𝐷𝑁  are derived from the 

intensity values 𝑓𝑖
𝑝 𝜈 |𝜈 = 0,1,2, … before applying edge detection on the 𝑖𝑡𝑕  sample line 

emanating from 𝑝 

𝜇𝑈𝑃 𝜈 = max𝑥=0,1,⋯𝜈 𝑓 𝑥 ,     𝜇𝐷𝑁 𝜈 = min𝑥=0,1,⋯𝜈 𝑓 𝑥 . 
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The above two connected intensity profiles along a sample line significantly 

eliminate the effects of locally disconnected structures intersecting with the sample line 

without causing any blurring and thus preserving thin structures. These two intensity 

connections are used to separately handle the cases of “step-up” and “step-down” edges. 

 

Figure 2 Illustration of different types of errors during discretization of the Laplacian of 
Gaussian function generating a discrete LoG kernel of size 2 × 1 + 1. 

Conventional LoG and DoG [49] are used for detecting edges on the one 

dimensional (1D) intensity profile along each sample line. An edge is located at the first 

zero crossing of the LoG with the strength of intensity gradient computed as DoG, 

exceeding a threshold. One of the most critical issue here is to determine discrete kernels 

for LoG and DoG under a given computational constrain. Specifically, we have 

developed an optimization method to compute the discrete kernels for LoG and DoG for 

a given kernel width. In the following, we describe the kernel optimization method.  
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Optimizing a discrete kernel representing LoG or DoG is an important and useful 

problem. Gunn [50] have reported a task- and image-dependent approach for optimizing 

a discrete kernel for LoG. However, a kernel optimized for one type of image may not 

optimally perform on another image. Here, we adopt a task- and image-independent 

approach of optimizing discrete LoG and DoG kernels. Essentially, our method is based 

on minimizing discretization errors under the constraint of a given kernel length. As 

illustrated in Figure 2, discretization of the continuous LoG involves two types of errors 

and we refer to these errors as discretization and truncation errors. Let 𝐿𝑜𝐺 𝑥 : 𝑅 → 𝑅 

denote the continuous LoG function while 𝑑𝐿𝑜𝐺 𝑛 : {−𝑁, ⋯ ,0, ⋯ , 𝑁} → 𝑅  denote the 

discrete LoG kernel for a given kernel size. Let δ denote the sample period of the LoG 

kernel. It can be noticed from Figure 3 that the discretization error increases with δ while 

the truncation error decreases with it. The discrete LoG kernel without scaling is to 

determine the δ minimizing the total errors. For a given δ, dsLoG[n] is determined as the 

average LoG value over the interval 𝑛𝛿 − 𝛿/2 ≤ 𝑥 < 𝑛𝛿 + 𝛿/2 . A scaling factor is 

needed due to the fact that, while the integral of the continuous LoG function over its 

domain is always zero, the same may not be claimed for the discrete kernel 𝑑𝑠𝐿𝑜𝐺 

without scaling. This discrepancy may lead to an artifactual shift in computing zero 

crossing. This problem is overcome by scaling the discrete kernel as following:  

𝑑𝐿𝑜𝐺[𝑛] =  
 
1

𝑠
× 𝑑𝑠𝐿𝑜𝐺 𝑛 , 𝑑𝑠𝐿𝑜𝐺 𝑛 ≥ 0

𝑠 × 𝑑𝑠𝐿𝑜𝐺 𝑛 , 𝑑𝑠𝐿𝑜𝐺 𝑛 < 0

  

where 𝑠  is the ratio of the sum of positive 𝑑𝑠𝐿𝑜𝐺  values to that of negative values. 

Finally, the value of 𝛿 is determined that minimizes the total error. Profiles of different 
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types of errors during discretization of the Laplacian of Gaussian function generating a 

discrete LoG kernel of size 2 × 1 + 1 is illustrated in Figure 3. 

 

Figure 3 Illustration of error values with different sample periods during discretization of 
the Laplacian of Gaussian function generating a discrete LoG kernel of size 
2 × 1 + 1. 

2.1.4 Edge Repositioning 

The edge points obtained in the previous step are intended to roughly describe the 

boundary of the t-scale ellipse centered at the candidate point 𝑝. Following the axial 

symmetry of an ellipse, for each pair of opposite sample lines, the two edge points should 

be equidistant from 𝑝 which is the center of the t-scale ellipse. However, the detected 

edge points on a local structure generally do not satisfy this symmetry. For example, in 

Figure 1, the edge locations colored yellow on the north-bound sample lines are mostly 

farther from the edges on corresponding opposite sample lines. Therefore, the edge points 

need to be repositioned by analyzing the edge points on every pair of sample lines. 
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Specifically, between the two edge points on a pair of sample lines, the one closer to the 

candidate point 𝑝 is selected and reflected on its complementary sample line. The edge 

locations colored green are obtained using this repositioning algorithm. 

2.1.5 Ellipse Fitting 

As discussed before, the last step in tensor scale computation is to fit an ellipse to 

the edge points. In our application, the number of edge points is significantly larger as 

compared to the number of parameters needed to represent an ellipse. The literature on 

ellipse fitting is quite matured and there are several established approaches available in 

the literatures [51-53] to accomplish the job. All ellipse fitting approaches essentially 

minimize the error between the observed data (here, the edge points) and the computed 

ellipse. Primarily, these methods differ with respect to the nature of these errors. Here, we 

have investigated two different kinds of distances defining errors, namely, algebraic and 

geometric distances. When errors are defined using algebraic distance, a canonical 

solution can be derived leading to a computational efficient solution. However, the 

solution may not be stable for highly anisotropic data sets. In our application, such 

situations may occur frequently, especially, when a candidate point is close to an edge. 

Geometric distance approach generates stable solutions for most ellipses and also uses 

more natural Euclidean distance metric. Unfortunately, it is difficult to derive a canonical 

form of solution for ellipse fitting optimizing geometric distance error, and therefore, a 

geometric distance based approach is commonly realized using an optimization technique 

raising issues relating to initialization. Here, we use the algebraic distance based solution 

for initialization to the geometric distance based approach providing that the former 

method yields a real ellipse. Under the situation where algebraic distance fails, principal 
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component analysis of repositioned edge points is used to obtain the initial solution. The 

entire ellipse fitting algorithm is summarized in the following: 

Step 1: Translate all 𝑟 edge points so that the candidate point 𝑝 is moved to the origin. 

Step 2: Compute the covariance matrix of the translated 𝑟 edge points and compute its 

eigenvectors 𝐢1and 𝐢2and the eigenvalues 𝜆1 and 𝜆2. 

Step 3: Rotate the 𝑟  edge points around the origin so that 𝐢1 and 𝐢2 are aligned to the 

coordinate axis. Solve the canonical equations for algebraic distance approach to 

compute the ellipse. 

Step 4: If the ellipse computation in Step 3 is real, use it for Step 5. Otherwise, use the 

ellipse with semi axis 𝜆1𝐢1 and 𝜆2𝐢2 for Step 5. 

Step 5: Compute the final ellipse by minimizing total geometric distance error from 𝑟 

edge points with the initialization obtained in the previous step. Newton’s 

algorithm along with the Jacobian of the error function is iteratively used to 

obtain the optimization of the target ellipse.  

(a)                  (b) 

Figure 4 Results of ellipse fitting using the geometric distance approach result (red) with 
different initializations. (a):  using principal component analysis (green) and 
(b): optimizing algebraic distance error (blue). 
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Figure 4 illustrates the final ellipse fitting with both PCA and algebraic distance 

based initialization. It can be noticed that both initialization lead to very similar ellipses. 

2.1.6 T-Scale Computation Result 

To display a tensor scale image, we apply a HSI color coding scheme following 

the fact that an ellipse centered at origin is uniquely defined by three factors - orientation 

of the major semi axis 𝜃, anisotropy  1 − 𝑏2 𝑎2 , and thickness 𝑏. We scale all three 

parameters to the regular range of hue, saturation and intensity and assign the values of 

these three parameters to HSI respectively. Thus, hue component represents orientation, 

saturation component represents how close the ellipse is to a circle and intensity 

represents the t-scale thickness of local structures as shown in Figure 5. 

(a) (b)

 (c) 

Figure 5 Results of t-scale computation on a sagittal image slice from an MR brain image. 
(a) An original image with computed t-scale ellipses illustrated at a few 
locations. (b) Color coded display of t-scale image using an HSI color coding 
shown in (c). 
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2.2 T-scale Based Registration 

2.2.1 Introduction to Image Registration 

Image registration has many uses in medical applications such as atlas based 

image segmentation, motion modeling, and multi-modality fusion. The fundamental 

assumption in these applications is that a correspondence mapping between anatomical 

images can be defined by image registration. Specifically, for deformable registration 

method, the primary objective is to compute a deformation vector field that warps a target 

image onto a reference image. In other words, for each point in the target image, we need 

to determine its correspondence in the reference image. 

2.2.2 T-scale Based Registration 

Here, we describe a direct method of computing this deformation vector field 

using t-scale. The principle of the t-scale-based deformation field computation method is 

illustrated in Figure 6. The underlying idea behind the method is to first use t-scale at a 

point to determine its associated local structure boundary and then compute local 

deformation vector by analyzing the movement of local structure boundaries in the 

images. As illustrated in Figure 6 (a), it is not obvious from the t-scale of 𝑎 as whether 𝑏 

or 𝑐 is the local structure boundary of 𝑎. However, we can easily solve this confusion by 

analyzing t-scale thickness of the points along the minor axis of the t-scale at 𝑎 . 

Obviously, t-scale thickness of points decreases along 𝑎𝑏      from 𝑎 to 𝑏 and increases along 

𝑎𝑐      from 𝑎 to 𝑐. We refer to the vector 𝑎𝑏      as normal vector of 𝑎. A color coded display of 

normal vector map for the phantom image of Figure 7 (a) is illustrated in Figure 7 (c). Let 

𝛕t 𝑎  denote the normal vector in the target image at a pixel location a and let  𝛕r 𝑎  
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denote the same in the reference image. Following the drawing of Figure 6 (b), 𝛕t 𝑎 =

𝑎𝑏     , and 𝛕r 𝑎 = 𝑎𝑐     . Assuming that the point 𝑏 in the target image corresponds to the 

point 𝑐 in the reference image, the deformation vector at a is defined as 𝛕r 𝑎 − 𝛕t 𝑎 =

𝑎𝑐     − 𝑎𝑏     = 𝑏𝑐     . Then the point 𝑎  of the target image should be deformed at 𝑎′  in the 

reference image. 

  

(a)                                                                   (b) 

Figure 6 Applying normal vector in deformation field computation. (a) Description of the 
normal vector derived from t-scale. (b) Illustration of computing the 
deformation vector at an image point 𝑎 with the information from target and 
reference images. 

A major challenge with this approach is that the normal vector is unstable near the 

medial axis of a local structure. The normal vector along the medial axis may associate 

with either of the two opposite boundaries of the local structure which is a significant 
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source of errors in our method. This problem is solved using the observation that the 

change in t-scale thickness across the structure is nonlinear near medial axis and we refer 

to this measure as scale-linearity (see Figure 7 (e)). Specifically, scale-linearity 𝛾 𝑝  at 

any point 𝑝 is determined as follows: 

𝛾 𝑝 =
1

2
  𝛕  𝑝 +

𝛕 𝑝 

 𝛕 𝑝  
  −  𝛕  𝑝 −

𝛕 𝑝 

 𝛕 𝑝  
    

This linearity measure is used as a weight while filtering the deformation field to 

generate a smooth deformation vector field. 

(a) (b)  (c)

(d)  (e) 

Figure 7 Different t-scale features used for image registration. (a) A binary phantom 
image. (b) T-scale image displayed using the color coding of Figure 5 (c). (c) 
Display of the normal vector map using the color coding of (d) uniquely 
describing the entire 360° angular space. (e) Linearity map with sharp change 
in intensity around medial axes. 
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2.2.3 Image Warping 

For non-rigid image registration, a point 𝑎 in reference image 𝑅  is mapped to 

point 𝑏 in target image 𝑇  with deformation 𝑕 𝑥 = 𝑥 + 𝑢 𝑥  such that 𝑏 = 𝑕 𝑎 . One 

important issue during this warping process is to preserve topology, or in other words, the 

resulting deformation field needs to be smooth. Different methods apply various 

techniques to ensure this requirement. For example, methods based on optical flow [37] 

apply a Gaussian convolution filter to the deformation field during the end of each 

iteration to regularize the deformation field; while methods based on continuum 

mechanics [54] iteratively estimate the transformations and restrict them to preserve 

topology by adding regularization constraint to the cost function. The constraint is 

derived from continuum mechanics such as linear elasticity and viscous fluid. 

In our algorithm, the deformation field computed using t-scale cannot guarantee 

its smoothness by computation procedure itself. So instead of warping the reference 

image using the full deformation field computed directly from t-scale, a “force field” 

acted on 𝑅 at point 𝑎 is generated as  

𝒇 𝑎 = 𝑘 𝛕r 𝑎 − 𝛕t 𝑎   

where 𝑘 denotes a small constant defining the magnitude relationship between the force 

and the full deformation. Further, a similar process as the “demons” method [37] is 

adopted, using Gaussian filtering that smoothes the force field to get the deformation 

field at each iteration. The only difference is that a linearity weighted Gaussian filtering 

is applied to overcome the medial axis problem. Let 𝛺 be the region centered at candidate 

point 𝑎 =  𝑖0, 𝑗0  and defined by the Gaussian kernel 𝐺 𝑖, 𝑗 = 𝑒− 𝑖2+𝑗 2 /2𝜎2
, −𝑡 ≤ 𝑖 ≤

𝑡, −𝑡 ≤ 𝑗 ≤ 𝑡, the weighted (with weight W(𝑖, 𝑗)) Gaussian filtering result is  
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𝒇 𝑎       =
 𝐺 𝑖, 𝑗 ∙ W 𝑖, 𝑗 ∙ 𝒇 𝑖, 𝑗  𝑖,𝑗  ∈𝛺

 𝐺 𝑖, 𝑗 ∙ W 𝑖, 𝑗  𝑖,𝑗  ∈𝛺
 

Note that the kernel size varies according to the total weight so that the kernel 

won’t lie completely in the “bad region”. Current implementation uses constant force and 

control the warping process by selecting the number of iterations, as well as monitoring 

the mean absolute error between the target image and the warped result. 

2.3 T-scale Based Interpolation 

2.3.1 Premise Analysis 

T-scale based interpolation relies on the assumption that adjacent slices contain 

similar anatomical features, and that t-scale at the same coordinate of the two slices is 

capable of mapping these similar features together. Thus the displacement of a structure 

between two adjacent slices should not be greater than half the structure size. If this 

assumption is violated, and an anatomical feature shifts out of the capabilities of tensor 

scale algorithm from one slice to the next, then the advantages of tensor scale based 

approach will be lost. 

Under such assumption, t-scale based interpolation can be designed following a 

different manner from the warping strategy applied for image registration process as 

shown in the last section. Such difference is determined by the underlying motivation of 

the two tasks. As stated in chapter one, the output of registration algorithm is a 

deformation field which will be further used for applications such as motion analysis and 

atlas segmentation, while the purpose of medical image interpolation is to increase the 

resolution perpendicular to the slice planes to restore the isotropy of the data set. So 

instead of the correspondence map, image interpolation algorithm generates the estimated 
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intermediate slices. Therefore, restrictions such as the smooth constraint may no longer 

be required for the purpose of interpolation and hence the idea of “interpolation lines” is 

more suitable for such circumstance rather than image warping process. 

2.3.2 Interpolation Method 

Figure 8 shows the outline of our interpolation method. Here we follow the idea 

of “interpolation lines” introduced in [47]. 

 

Figure 8 Illustration of computing the interpolation line L associated with an image point 
𝑎𝐼 on the interpolation plane with the information from t-scale in images of 
Slice A and Slice B. 

To simplify the problem, we set a general coordinate system as shown above to 

avoid the three transformation matrices as stated in [47]. With this coordinate system, to 

calculate the intensity value at position 𝑎𝐼 =  𝑖, 𝑗, Position  on the interpolation plane, 
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the interpolation line 𝐿 is firstly generated from t-scale derived normal vectors 𝑎𝐴𝑏𝐴
           and 

𝑎𝐵𝑏𝐵
           . Record that normal vector at a point 𝑝 =  𝑖, 𝑗, 𝑘  is 𝛕 𝑝 , we have 𝑎𝐴 =

 𝑖, 𝑗, 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 𝑏𝐴 = 𝑎𝐴 + 𝛕 𝑎𝐴 =  𝑖 + 𝛕𝑥 𝑎𝐴 , 𝑗 + 𝛕𝑦 𝑎𝐴 , 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 𝑎𝐵 =  𝑖, 𝑗, 0 , 

and 𝑏𝐵 = 𝑎𝐵 + 𝛕 𝑎𝐵 =  𝑖 + 𝛕𝑥 𝑎𝐵 , 𝑗 + 𝛕𝑦 𝑎𝐵 , 0 . Further, 𝐿 is translated to 𝐿𝑎  so that 

it goes through position 𝑎𝐼. So 𝐿𝑎  can be written as: 

 
𝑥
𝑦
𝑧
 =  

𝑖
𝑗

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 + 𝑡  

𝛕𝑥 𝑎𝐴 − 𝛕𝑥 𝑎𝐵 

𝛕𝑦 𝑎𝐴 − 𝛕𝑦 𝑎𝐵 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

  

Then the intersections of 𝐿𝑎  with slices A and B, 𝑐𝐴 and 𝑐𝐵  are calculated respectively 

using the line function with two parameters 𝑡𝐴 = (𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)/𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and 

𝑡𝐵 = −𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛/𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 . The intensity values at 𝑐𝐴  and 𝑐𝐵  are calculated using 

bilinear interpolation on the two slice planes and intensity value at 𝑎𝐼 is finally calculated 

using linear interpolation between the intensity values at positions 𝑐𝐴 and 𝑐𝐵. 

2.3.3 Local Scale and Medial Region Problem 

In the implementation of t-scale based image interpolation, the unstable problem 

with region near the medial axis of a local structure, as mentioned in the registration 

section, is still a challenge. With the premise and character of t-scale based interpolation, 

this problem can be overcome by introducing another t-scale derived parameter “local 

scale”, avoiding the information lost during smoothing process which is taken for 

registration. At any location 𝑝 in an image, local scale 𝐿𝑆 𝑝  represents the scale of the 

local structure around 𝑝. By tracing t-scale thickness change along the opposite direction 

of the normal vector at 𝑝, the value of 𝐿𝑆 𝑝  is determined by the local maxima of t-scale 
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thickness along the path. Figure 9 shows the local scale of a phantom image, it is obvious 

that the local scale at a location 𝑝 shows the size of local structure containing 𝑝. 

     

(a)                                     (b)                                     (c) 

Figure 9 Local scale derived from t-scale used for image interpolation. (a) A binary 
phantom image with structures of different width. (b) Scale map (c) Local 
scale map with same value at locations contained in the structure of the same 
width. 

With information provided by local scale and the assumption that the 

displacement of a structure between two adjacent slices should not be greater than half 

the structure size, the region near the medial axis of a structure can be identified and the 

unstable problem can be solved. Following the notations in Figure 8, as shown in Figure 

10, let 𝑘 denotes the threshold defining the degree of adjacency, normal vectors 𝛕 𝑎𝐴 =

𝑎𝐴𝑏𝐴
           and 𝛕 𝑎𝐵 = 𝑎𝐵𝑏𝐵1

             , if  𝛕 𝑎𝐴  > 𝑘 ∙ 𝐿𝑆 𝑎𝐴  or  𝛕 𝑎𝐵  > 𝑘 ∙ 𝐿𝑆 𝑎𝐵 , then either of 

𝑎𝐴 and 𝑎𝐵 are near the medial axis. Meanwhile, if the intensity value  I 𝑎𝐴 − I 𝑎𝐵  <

𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑, then 𝑎𝐴 and 𝑎𝐵 are within the same structure. Further, if the angle between 

𝛕 𝑎𝐴  and 𝛕 𝑎𝐵  is greater than 90°, then an error is detected. Without losing generality, 

assuming  𝛕 𝑎𝐴  <  𝛕 𝑎𝐵  , then during interpolation line calculation, 𝛕′ 𝑎𝐵 =
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𝑎𝐵𝑏𝐵2
             = 2𝐿𝑆 𝑎𝐵 − 𝛕 𝑎𝐵  is used instead of 𝛕 𝑎𝐵 . In this way, the interpolation line 

𝐿 𝑎𝐼  can be correctly generated. 

Also, in case there are some computation errors during t-scale computation, an 

outlier detection and correction process is further applied to the interpolation line set 

before the final interpolation result is generated. Considering a region Ω centered at a 

candidate point 𝑝 , to determine if 𝐿 𝑝  is an outlier, a polynomial fit is applied to 

𝐿 𝑎 , 𝑎 ∈ 𝛺 . If 𝐿 𝑝  is far from the polynomial result at 𝑝 , 𝐿 𝑝  is considered 

computation error and its value will be replaced by the polynomial result at 𝑝. 

 

Figure 10 Illustration of correcting false coupled normal vectors near medial axis of a 

structure using local scale. The interpolation line 𝐿 is calculated using 𝑎𝐵𝑏𝐵2
              

instead of original normal vector 𝑎𝐵𝑏𝐵1
             . 



www.manaraa.com

26 
 

 

2
6
 

2.3.4 Performance Evaluation 

For a given 3D image consists of 𝑘 slices, each slice except the first and last slice 

is removed one at a time. The interpolation algorithm is then used to interpolate between 

its neighboring slices to produce an estimated version of the removed slice. The error is 

further evaluated between the interpolated slice and the corresponding removed slice 

using 2 error measures of mean absolute difference and mean square difference. Let 

𝐼𝑖𝑛𝑡  𝑥, 𝑦, 𝑖  and 𝐼𝑟𝑒𝑚  𝑥, 𝑦, 𝑖  respectively denote the intensity in slice 𝑖 at position  𝑥, 𝑦  

in the interpolated and removed slice, the size of image is 𝑚 × 𝑛 × 𝑘, then the mean 

absolute difference is defined as 

𝑀𝐴𝐷 =
1

𝑘 − 2
 

1

𝑚 ∙ 𝑛
   𝐼𝑖𝑛𝑡  𝑥, 𝑦, 𝑖 − 𝐼𝑟𝑒𝑚  𝑥, 𝑦, 𝑖  

𝑛

𝑦=1

𝑚

𝑥=1

𝑘−1

𝑖=2

 

The mean square difference is defined as 

𝑀𝑆𝐷 =
1

𝑘 − 2
 

1

𝑚 ∙ 𝑛
   𝐼𝑖𝑛𝑡  𝑥, 𝑦, 𝑖 − 𝐼𝑟𝑒𝑚  𝑥, 𝑦, 𝑖  

2
𝑛

𝑦=1

𝑚

𝑥=1

𝑘−1

𝑖=2
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CHAPTER THREE 

RESULTS 

3.1 T-scale based Registration 

Here, we present preliminary results of application of the proposed t-scale based 

registration method on two dimensional geometric shapes as well as on CT images of a 

cadaveric ankle specimen. The performance of the method has been compared both 

qualitatively and quantitatively with that of a BSpline based method from ITK [55]. The 

method uses 4-level multi-resolution realization of BSpline deformable registration, 

applying mattes mutual information as metric, using regular step gradient decent 

optimizer, and setting grid size on image to 8. 

3.1.1 Applications to Image Warping for Geometric Shapes 

Figure 11 illustrates the result of application of the method to warping a disk 

(target shape) onto a square (reference shape). Results of deformation from Figure 11 (a) 

to Figure 11 (b) after application of t-scale based method for 10, 50 and 100 iterations are 

presented in Figure 11 (c, d, e), respectively. The result of deformation after applying the 

spline based method for 100 iterations is presented in Figure 11 (f). It is evident from 

Figure 11 (c, d, e) that the t-scale based method has been remarkably successful in 

producing the sharp corners of the square while deformed from the round shape of the 

disk. On the other hand, the BSpline based method has failed to show the same 

performance (with specific grid spacing and iteration times). Figure 12 illustrates 

intermediate results of warping from a Y-like shape to a disk via an intermediate shape 

shown in Figure 12 (e). As depicted in the figure, the method has been successful in 

blending both concave and convex corners into round shapes.  
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(a)                              (b)                             (c) 

 

 
(d)                              (e)                             (f)  

Figure 11 Illustration of warping a disk onto a square. (a, b) Original target and reference 
shapes. (c-e) Derived shapes after applying t-scale based warping method for 
10, 50, 100 iterations, respectively. (f) The shape derived by applying the 
BSpline based warping method for 100 iterations. 

 
(a)                             (b)                             (c)                             (d) 

 

 
(e)                             (f)                             (g)                             (h) 

Figure 12 Illustrations of different shapes during deformation of a Y-like target shape (a) 
onto a disk (h) via an intermediate shape (e) using the t-scale based method. 
Intermediate shapes during warping from (a) to (e) are shown in (b-d) while 
(f-g) illustrate intermediate shapes between (e) and (h). 



www.manaraa.com

29 
 

 

2
9
 

3.1.2 Applications to 2D registration of CT images 

The effectiveness of the method has been quantitatively examined on a CT image 

of a cadaveric ankle specimen. A cadaveric ankle specimen was scanned in a Siemens 

Sensation 64 Multi-slice CT scanner at 120 kVp and 140 mAs to adequately visualize the 

bony structures. After scanning in a helical mode with a slice thickness of 0.6 mm and 

collimation of 12×0.6 mm, data was reconstructed at 0.3 mm slice thickness with a 

normal cone beam method utilizing a very sharp algorithm of U75u to achieve high 

image resolution. Image parameters for these scans were as follows: matrix size 

=512×512 pixels; number of slices =314; pixel size =0.21mm. Two image slices from the 

CT scan are illustrated in Figure 13(a, b). The method was applied on 20 pairs of image 

slices randomly selected from the 3D CT image data set. Each pair consists of two 

successive image slices of which one is considered as the target image and the other as 

the reference one. The target image is deformed onto the reference image using the t-

scale based method and the mean absolute error between the registered and the reference 

image is computed. The mean and standard deviation of average absolute initial errors 

(i.e., difference between original reference and target images) for 20 pairs and that after 

registration using t-scale and BSpline based methods are presented in Table 1. Table 1 

demonstrates the t-scale based method reduces the original difference between the target 

and reference images and performs slightly better as compared to the BSpline based 

method in mean absolute errors. The reduction of absolute errors after t-scale based 

registration is also evident from Figure 13. 
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(a)                                          (b)                                           (c) 

 

    

(d)                                               (e) 

Figure 13 Results of application of t-scale based image registration on two successive 
image slices from CT data set of a cadaveric ankle specimen. (a) Reference 
image. (b) Target image. (c) Absolute difference map between (a) and (b). (d) 
Result of registration of (b) onto (a) using t-scale method. (e) Same as (c) but 
between (a) and (d). It may be viewed that the reduction of error is clearly 
visible in (e). 

Table 1 Mean absolute errors (gray value range 0~255) and standard deviation of the 
absolute errors between 20 pairs of successive image slices before and after 
applying different registration methods. 

 
original spline tensor scale 

mean absolute error 2.95 2.64 2.57 

standard deviation 3.52 2.97 3.03 
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3.2 T-scale based Interpolation 

Here, we present preliminary results of application of the proposed t-scale based 

interpolation method on CT images. The performance of the method has been compared 

both qualitatively and quantitatively with that of registration based method [47]. Both 

BSpline based method and Demons method designed from ITK [55] are used for 

registration part. 

3.2.1 Data and Method Description  

We use both phantom data and real images to test our method. Simulated brain 

MRI data from BrainWeb is used as phantom data. Simulated T1 image for anatomical 

model of normal brain with 0% noise, 0% intensity non-uniformity and 1 × 1 × 1mm 

spacing is selected and in-plane grid size 181 × 217. In order to test the algorithm’s 

robustness on different noise and intensity non-uniformity level, correlated noise and 

intensity non-uniformity is added manually. To add correlated noise to an image with 

grid size 𝑚 × 𝑛, 2D random numbers with size 𝑚 × 𝑛 following uniform distribution in 

range [0 𝐴] is first generated and then smoothed by Gaussian filter to get an original 

noise image. To quantitatively measure the noise level, signal to noise ratio (SNR) is used. 

Let 𝐴𝐼𝑚𝑎𝑔𝑒  𝑖, 𝑗  and 𝐴𝑁𝑜𝑖𝑠𝑒  𝑖, 𝑗  respectively denote the magnitude of image and noise at 

location  𝑖, 𝑗 , we have original SNR in this case as 

SNR0 =
  𝐴𝐼𝑚𝑎𝑔𝑒

2  𝑖, 𝑗 𝑛
𝑗=1

𝑚
𝑖=1

  𝐴𝑁𝑜𝑖𝑠𝑒
2  𝑖, 𝑗 𝑛

𝑗=1
𝑚
𝑖=1

 

If we want to generate a noisy image 𝐴𝑁𝐼𝑚𝑎𝑔𝑒  𝑖, 𝑗  with SNR = 100/T, we need to scale 

the noise before add it to the original image as 
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𝐴𝑁𝐼𝑚𝑎𝑔𝑒  𝑖, 𝑗 = 𝐴𝐼𝑚𝑎𝑔𝑒  𝑖, 𝑗 + 𝐴𝑁𝑜𝑖𝑠𝑒  𝑖, 𝑗 ∙  
SNR0

SNR
 

To add T% intensity non-uniformity, a Gaussian image is first generated with height 

max𝑖∈ 1,𝑚 ,𝑗∈ 1,𝑛 𝐴𝐼𝑚𝑎𝑔𝑒  𝑖, 𝑗 ∙ T%, then added to the original image. 

For real image, first group consists of 1 lung CT image with spacing 0.58 ×

0.58 × 1.25mm , and 1 abdomen CT image with spacing 0.78 × 0.78 × 1mm  from 

National Cancer Imaging Archive, the in-plane grid size is reduced to 256 × 256; second 

group consists of 4 ankle CT images (left and right for 2 subjects) mentioned in the last 

section, the spacing is 0.21 × 0.21 × 0.3mm and the in-plane grid size is reduced to 

256 × 256; and the last group consists of 6 lung CT images (for 6 subjects) with spacing 

0.55 × 0.55 × 0.5mm and the in-plane grid size is reduced to 256 × 256. The reason we 

reduce the grid size is to save processing time for t-scale computation. 

For comparison, registration based method is selected. The registration part is 

realized using both BSpline based algorithm as described in [47] and Demons algorithm 

[37]. Demons algorithm is chosen because it requires less parameters and yields more 

stable performance with much faster registration speed and better accuracy for some 

cases. For BSpline based registration algorithm, mean square metric and regular step 

gradient descent optimizer is applied. Following a multi resolution registration scheme, 

we design a 4-level registration method with grid size 16. The maximum step lengths are 

16, 8, 4, 2, and the minimum step lengths are 1, 0.5, 0.1, 0.05. At each resolution level, if 

the minimum step length is reached or more than 1000 iterations occur, the algorithm 

moves to the next level. For demons method, we arbitrarily provide an iteration number 
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of 500, and from our observation, for most cases only minor change occurs in the 

updating metric value after 300 iterations. 

3.2.2 Result on Phantom Data  

Here, the results on BrainWeb phantom data generated by all 3 methods: t-scale 

based image interpolation, registration based image interpolation with BSpline, and 

registration based image interpolation with Demons are presented.  

41 Slices are selected from the data and 39 results are generated for each method. 

Figure 14 shows the slice-by-slice mean absolute difference and Figure 15 shows square 

root of mean square difference for the data with image intensity range 0 to 65535. 

 

Figure 14 Performance of different interpolation methods on BrainWeb data at difference 
slices measured by MAD. 
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Figure 15 Performance of different interpolation methods on BrainWeb data at difference 
slices measured by square root of MSD. 

It can be observed that t-scale based method outperforms the other two in sense of 

mean absolute difference and mean square difference at most of the slices. Paired t-test 

result is given in Table 2, as we can see, the results have statistical significance. 

Table 2 Paired t-test result for slice-by-slice performance analysis 

t-test result Demons & BSpline Demons & T-scale BSpline & T-scale 

MAD 1.3884E-14 1.64877E-10 5.91712E-21 

MSD 1.98934E-05 0.0177143 8.62175E-09 
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Further, the robustness of the three methods is tested on different noise level and 

intensity non-uniformity level (sample shown in Appendix A). The result is shown in 

Figure 16 and Figure 17. The t-scale based method has a better and more stable 

performance.  

(a) 

(b) 
Figure 16 Performance of different methods for data at different noise level measured by 

(a) MAD and (b) square root of MSD. 
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(a) 

 (b) 
Figure 17 Performance of different methods for data at different intensity non-uniformity 

level measured by (a) MAD and (b) square root of MSD. 

Paired t-test shows that for this experiment, the performance of t-scale based 

method has statistical significance compared with the other two. 
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3.2.3 Result on Real Image  

The following gives the interpolation result on real images. 6 lung CT data: 001, 

002, 031, 072, 084, 116; 4 ankle CT data: LT152, RT152, LT64, RT64; and tow NCIA 

data: lung and abdomen. For each image, 51 slices are selected.  

(a) 

(b) 

Figure 18 Performance of different methods on 12 images measured by (a) MAD and (b) 
square root of MSD. 
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As it can be observed from the result, for all images, t-scale based interpolation 

method outperforms the other two. Here we only present the overall performance of mean 

and standard deviation of the error measures for each image. Paired t-test shows that for 

this experiment, the performance of t-scale based method has statistical significance 

compared with the other two. Detailed slice-by-slice result and sample slices result are 

provided in Appendix B and C. 

 



www.manaraa.com

39 
 

 

3
9
 

CHAPTER FOUR 

DISCUSSION 

In this project, most of the work is based on t-scale computation. Thus, the 

accuracy of t-scale is important. As many other image processing procedures, t-scale 

computation result is closely related to the selection of parameters of number of sample 

lines, length of sample lines, sigma of LoG, length of LoG, and threshold determining 

homogeneity. For different images, different selections are needed to ensure satisfying 

results, which will further influence the accuracy of registration and interpolation. Also 

for noisy images, we may need to apply pre-filtering to assist following t-scale 

computation. Therefore it will be necessary to investigate on parameter selection and pre-

filtering in future research. 

Currently, the implementation of t-scale based registration and interpolation are 

direct and definitive which require no optimization process. One problem with such 

implementation is that there are usually some errors that it cannot handle even we have 

considered all kinds of possibilities under our assumption. These errors may come from t-

scale computation error in edge detection/ellipse fitting, or from the noise in the image. 

Therefore, we need to apply smooth filtering for registration and some correction for 

interpolation. In the future, we will develop a registration scheme that uses t-scale as a 

similarity measure following the traditional iterative non-rigid image registration 

framework. 
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CHAPTER FIVE 

CONCLUSION 

T-scale is a useful local morphometric parameter, and here, we have significantly 

improved the performance of the t-scale computation algorithm by enhancing edge 

detection and ellipse fitting algorithms. Further, we studied the application of t-scale in 

2D image warping, registration and interpolation. Specifically, for registration, we have 

formulated a new t-scale derived feature called normal vector at each image point that 

denotes the vector joining the point to the nearest edge binding the local structure. This 

normal vector yields a more precise 360° orientation description of a local structure from 

the original 180° orientation information of t-scale. Normal vector is a useful image 

feature that can be directly computed from a gray level image requiring no image 

segmentation and it represents a high level morphological property in an image. A 

method has been developed based on it that directly computes the deformation field from 

a target image to a reference image. For interpolation, we have derived another t-scale 

based feature called local scale at each image point that represents the scale of the local 

structure around the point. Local scale is useful in determine if a point is near the medial 

axis of the local structure and thus is applied in correcting the errors generated by the 

direct computation process. The algorithms are tested on both phantom and real images 

and the performance is compared based on two error measures with other methods of 

BSpline based registration and registration based interpolation. 
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APPENDIX A 

SAMPLE SLICES FOR ROBUSTNESS TEST 

 

Figure A1 Phantom image for different level of intensity non-uniformity. 
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Figure A2 Phantom image for different noise level. 
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APPENDIX B 

SLICE-BY-SLICE RESUTL FOR REAL DATA 

 

Figure B1 Slice-by-slice result of square root of mean square difference generated by 3 
interpolation methods for lung CT data. 
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APPENDIX C 

SAMPLE SLICES FOR REAL DATA 

 

Figure C1 One sample slice from lung CT data with the result given by 3 different 
interpolation methods. 
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